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Fig. 1. Praat visualisation of a phonetic segmentation of the
utterance “The reasons for this dive seemed foolish now”.
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@ Phone-level segmentation of speech
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o HMM-based acoustic modelling [1,2,3,4,5]

o landmark detection [6,7,8]

o deep belief networks [9]

o Adriana Stan
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3 Proposed method

Main ideas

e Avoid tailoring the method towards a particular
language or dataset;

e Spectral discontinuities are in most cases a good
indicator of a phoneme boundary;

e The “curse of dimensionality” could be avoided by
using a good dimensionality reduction technique;

o Use a perceptually relevant acoustic parametrisation.
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Proposed method
Solutons

o HMM-based forced alignment can provide a good
reference for phonetic boundaries;

o t-Distributed Stochastic Neighbour Embedding
dimensionality reduction;

o Spectro-Temporal Excitation Pattern
parametrisation.
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Proposed method
tSNE

o Merck Viz Challenge winning dimensionality reduction
technigue;

® converts pairwise Euclidean distances in N-dimensional
spaces into joint probabillity distributions

e in low-dimensional space the similarity between two data
points is modelled by a Student-t distribution;

e the mapping minimises the Kullback-Leibler divergence
with respect to the high-dimensional distribution, using a
gradient descent method.
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Proposed method
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Fig. 2. t-SNE 2D representation of the utterance “The reasons for this
dive seemed foolish now”. |




Proposed method

STEP parametrisation
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Utterance

Baseline forced alignment
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Proposed method

Utterance

Baseline forced alignment
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Proposed method

Utterance

Baseline forced alignment
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Proposed method

Forced alignment boundary
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boundary

Window

/4



Proposed method

Forced alignment boundary

Window around baseline
boundary
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Proposed method

LO Forced alignment boundary
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Evaluation

Dataset

o TIMIT dataset

® 5.5 hours of recordings of phonetically-balanced prompted
speech

e 630 speakers in 8 major dialects of American English.
® 16 kHz with a 16 bit resolution.

o the 61 phones used in TIMIT were mapped to the CMU
Pronouncing Dictionary, resulting a set of 40 phones.

e the silence segment boundaries were excluded from the
evaluation
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Evaluation

Baseline forced alignment systems

® [Three separate acoustic models:
o standard 13 MFCCs with energy, delta and delta-deltas;
o 34 STEP with energy, delta and delta-deltas;

o MFCC + STEP representation: 34 STEP coefficients
extracted and 13 MFCCs, plus their delta and delta-
deltas.

o All acoustic models used a 5 state, left-to-right, context-
independent HMM for each phone.
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Results

Table 1. Forced alignment results using different feature sets

Accuracy [%]

10ms 20ms 50ms
MFCC 39.68 56.76 83.34 92.33
STEP 37.12 55.22 80.00 89.76

MFCC+STEP 42.93 62.53 84.29 94.17
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.
O
2; Table 2. Segmentation results for different alignment systems
S
ch%j Accuracy [%]
S System 5ms 10ms 20ms 50ms
2 Baseline 42.93 62.53 82.29 94.17
0P
t-SNE 2D+STEP 41.34 59.52 77.73 39.54
t-SNE 3D+STEP 41.89 00.49 79.90 01.78
t-SNE 2D + MFCC 38.12 57.00 7/6.12 38.43
=
= t-SNE 3D + MFCC ~ 39.72 57.12 77.09 88.20
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Fig. 4. TIMIT speech corpus division into phonetic categories
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Results

o

é_ Table 3. Results for voiced and unvoiced phonetic boundaries

% Voiced phones

%j Accuracy [%]

8_ System 5ms 10ms 20ms 50ms

2 Baseline 39 71 59 54 30.59 90 12

1 t-SNE 2D 36.88 54.50 73.20 86.16
t-SNE 3D 38.31 56.28 /6.28 89.09

Unvoiced phones
Accuracy [%]
Sms 10ms 20ms

&

qV]

CCDU Baseline 41.37 58.79 /8.11

S t-SNE 2D A5 O A 79.23 87.85
3; t-SNE 3D 44 81 62.94 79.51 88.58
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Results

Unvoiced-voiced phones

Accuracy [%]

System 5ms 10ms 20ms 50ms
Baseline 42 32 63.36 81.7/6 8/7.84
t-SNE 2D 39.66 58.93 79.40 86.90
t-SNE 3D 38.80 58.40 79.52 87.06

Voiced-unvoiced phones
Accuracy [%]
Sms 10ms 20ms

Baseline 41.85 59.34 79.25
t-SNE 2D AG o 79.02 86.69
t-SNE 3D 45.69 63.55 79 41 87.34

Table 4. Results for unvoiced-voiced and voice-unvoiced phonetic boundaries
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3 Results

Table 5. Results for voiced-voiced and unvoiced-unvoiced phonetic boundaries

Voiced-voiced boundaries

Accuracy [%]

5ms
t-SNE 2D 30.54 42.50 01.28 /78.06
t-SNE 3D 33.55 48.43 06.11 82.46

Unvoiced-unvoiced boundaries
Accuracy [%]
5ms 10ms 20ms

Baseline 22.27 35.03 53.58

{-SNE 2D 31.70 43 /6 o4 /9
t-SNE 3D 30.7/6 42.52 054.460 60.65
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Conclusions

e the method can be applied to any speech resource in any
language;

® better results for unvoiced phonemes, but worse for
voiced phonemes;

o combination of t-SNE with some other feature reduction
algorithm would be beneficial;

e celling eftect in the case of unvoiced-unvoiced
boundaries, where the baseline alignment even at a 50
ms threshold has an accuracy of only 60.86%:;

® adjust representation and distance computation for each
boundary type.
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Thank you for your attention!

Adriana.Stan@com.utcluj.ro

http://speech.utcluj.ro/astan/
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