
A language independent user adaptable approach for
word auto-completion

Abstract—In this paper, we address the problem of word auto-
completion for free text (e.g. messages, emails, articles, poems,
etc.) written in different languages. We focus on improving the
user experience by developing a user-oriented model that is
able to learn different writing styles, while still providing initial
predictions without any user written documents. We show that
by learning from the user, the performance of an auto-completion
system can be improved by up to 18 %. In order to keep query
processing times low, we deploy a binary search technique that
retrieves groups of words from an inverted index based on their
first letters. This retrieval method reduces the query processing
time by up to 80%.

I. INTRODUCTION

With the increasing usage of mobile devices, and devices
with limited typing facilities, it is highly desirable to have
solutions to speed up typing. The goal of such a system is
to predict words (and phrases) while the user is typing, thus
allowing for faster writing and increasing productivity.

The auto-completion problem is not new. Such solutions
have been used for years in a variety of activities. The most
common of these activities is everyday text writing tasks.
Nowadays almost everyone owns a smartphone device. Most
of these devices have a built-in software that suggests words
while the user writes messages, emails, etc. Another use case is
query predictions in search engines. For instance, Google (and
others) display a list of suggestions when someone starts typing
in the search field. Other applications of auto-completion
systems include command line suggestions, code completions
in IDEs, etc.

The general flow of an auto-completion system is: (1) A
query is made to the system (for example the first letters
of a command or file in the command line), (2) the system
processes the query and (3) returns suggestions.

A query for word auto-completion usually consists of 2
or 3 previous words, and the first letters of the desired word.
For example, consider typing the following text: ’I am go’. At
this point, a word completion query would be triggered with
the previous words being [’i’, ’am’] and the first letters being
’go’. Hopefully the system answers with ’going’ or ’goofy’.

The component of an auto-completion system that usually
stores possible completions is the model.

II. RELATED WORK

Hogler Bast and Ingmar Weber [4] discuss the possibility
of using an inverted index [6] for answering queries made
to search engines. They present the basic principle of using a
normal inverted index, and the retrieval function of word based
on their common documents. Furthermore, they also introduce
an improved inverted index that enhances the runtime on

query processing. Their inverted index structure reduces query
processing time ten times compared to the one of compressed
state of the art indexes.

Milad Shokouhi [5] presents a possible supervised ranking
framework for learning user search preferences based on the
user’s long term search history and location. They prove
that personalized rankers improve the performance of regular
popularity based rankers by 9%.

An important note is that for an autocompletion system to
be useful, it must be able to process queries fast. Research [2],
[3] shows that the upper time limit for to the human eye to
perceive instantly is around 100 ms.

Moreover, one can also push the limits further, and make
whole phrase predictions. Arnab Nandi and H. V. Jagadish
[1] propose an approach for phrase auto-completion that uses
a data model similar to a pruned count suffix tree (PCST)
[8]. They solve two problems that occur with phrase auto-
completion: efficiently storing phrases and how much of a
phrase to predict. For this they introduce the Fuzzy Tree data
structure that stores phrase words similar to how a suffix
tree stores word prefixes. They also define the notion of a
significant phrase and use this to determine how much of the
phrase to predict.

III. CONTRIBUTIONS

A. Motivation

Some autocompletion systems suggest words based on their
occurrence frequencies alone. As each user has a personal
writing style, it is highly desirable that an autocompletion
system learns these styles. This ensures that the system adapts
to the user, and is able to make predictions accordingly.
However, the system should have the ability to predict in a
cold start context (new user scenario).

B. Conceptual Design

Ideally, the designed system tackles both word and phrase
auto-completion. This requires a clear separation of the query
triggers for each part. An obvious solution is to trigger word
completion queries with each alphabetic character, and phrase
completion queries with each space character. Moreover, the
system must work on multiple languages at once. To do this,
the design must be loosely coupled, in order to change compo-
nents with ease. This allows it to load different data models and
switch to the corresponding query processors during runtime.
Figure 1 presents a possible component diagram.

Formally, a text editor extension listens for input charac-
ters. It switches between the two auto-completion processors
depending on the input. Once a processor is chosen, a query



Fig. 1. The component diagram of a word and phrase autocompletion system

is issued to it and the result is returned in the form of a list,
regardless of which processor was used to answer the query.

C. Proposed Approach

Our approach aims to be a language-independent one. We
focus on improving user experience by developing an user-
oriented model that is able to learn different writing styles,
while still providing initial predictions without any user written
documents. Our approach employs a hybrid strategy starting
from the probabilistic and inverted index models [6]. We take
into account the one dimensional positions of words in the
documents, and use these to define the context in which a
word is used in relation to previous words.

For this, we first propose an extension to the inverted index
model, the User Oriented Index, that stores word positions
in documents and marks words that appear in user written
documents. The User Oriented Index is discussed in section
IV of this paper. We illustrate what changes from the simple
inverted index through an example.

Secondly, we introduce a fast binary search retrieval based
on the first word letter (Bidirectional Group Boundary Iden-
tification), and a post-processing ranking phase based on (1)
word occurrence frequency in general documents, (2) word
occurrence frequency in user documents and (3) the one
dimensional distance between words and the previous words
from the query. Both of these are presented with more details
in section V of this paper.

We finally evaluated and compared our solution with a
simple index that ranks solely on frequencies. We use three
data sets that have different sizes, topics and languages (two
of them are written in English, and one in Romanian).

IV. DATA MODEL

The section starts with a short exemplification of the
inverted index and then enhances it by including information
about the user and word positions in documents.

TABLE I: Example of Inverted Index pruned with OCC TH
= 2

Word Posting List Word Posting List
i [doc1, doc3] is [doc2]
the [doc1, doc2, doc3] filled [doc2]
market [doc1, doc2, doc3] with [doc2]
people [doc2, doc3] am [doc1]
going [doc1] hate [doc3]
to [doc1] it [doc3]
when [doc3] fill [doc3]

A. The Inverted Index

A widely used data model for word auto-completion is the
Inverted Index [6]. This is a dictionary of terms (sometimes
also referred to as a vocabulary lexicon) that stores, for each
term, a list of documents the term occurs in. Each item in
the list - which records that a term appeared in a document
(and possibly the positions in the document) - is conventionally
called a posting (the list is called postings list).

To show the inverted index in auto-completion solutions,
consider the following documents:

1) doc1: ”I am going to the market”
2) doc2: ”The market is filled with people”
3) doc3: ”I hate it when people fill the market”

The resulting inverted index is presented in table I.

We experimentally found that an uniform pruning a
common [9] task in the context - with an occurrence threshold
(OCC TH) that accounts for document length (like the one in
equation (1)) performs good.

OCC TH = 5 ∗ 10−6 ∗ nChars (1)

In equation (1) nChars is the number of characters in the
documents. Nandi and Jagadish use this idea of varying
threshold as well [1].

For the purpose of this example, lets consider a occurrence
threshold of 2. All the words from our inverted index that have
frequencies less than OCC TH have been marked with italics.
Pruning reduces the size of the index, which also decreases
the overall runtime and increases the performance by ensuring
that only the most frequent words are considered as valid
suggestions.

An auto-completion query made to an Inverted Index is
composed of a set of previous words (PW) and the first n
letters of the desired word (FL). The result of such a query is
a list of words [w1, w2, w3, ...] where w1, w2, ... all start
with the letters FL, and appear in the same documents as the
previous words PW. Then, a post-processing ranking step sorts
the returned words [w1, w2, w3, ...] based on some criteria.

Let’s now consider that someone types the following:
”People are in the mark...”. A query of the form Q = { PW:
[’in’, ’the’], FL: ’mark’ } is triggered. The system searches
for all the words that start with ’mark’ and have common
documents with either of the words ’in’ or ’the’. This results
in the word ’market’ being returned as a completion proposal.



B. User-Oriented Index

In order to be able to learn from the user, and adapt
to his/her writting style, we developed the User-Oriented
Index which, besides storing words and posting lists like the
simple inverted index, marks those words that come from
user documents, and records information about user specific
word positions and frequencies. Nevertheless, we still desire
initial predictions, without having user written documents. We
do not want to have two different models for initial and
user predictions, as this adds extra logic to the system, and
initial words may still be of interest after having user-written
document. In order to achieve our goals, we decided to separate
the two concepts (initial prediction and user prediction) at
document level:

• Initial documents: those documents that make the
initial index (the default model that comes with the
system). These document should be spread on a large
variety of topics, and contain a rich vocabulary.

• User documents: those documents that are written by
the user. These are used to update the initial index as
the user writes them, and words that come from these
documents are given a higher priority at ranking.

We differentiate between the two document types by using
a UserDocumentMask. This is a mask that gives user written
documents higher document ids. For example, using a User-
DocumentMask of 100, regular documents get ids between [0,
100], and user documents from 101 to infinity. For our tests,
we used a mask of 10000.

A more permissive occurrence threshold should be used for
user documents. Let’s call this the user occurrence threshold
(USER OCC TH on short). The user occurrence threshold in
equation (2) allows ten times more user words in the index
compared to the one (1).

USER OCC TH = 0.5 ∗ 10−6 ∗ nChars (2)

Using this extra user information allows us to rank by
considering all of the following:

• word frequency in initial documents

• word frequency in user-written documents

• the one dimensional distance between the word and
the previous words from the query in the common
documents.

This requires a more complex ranking algorithm, which is
discussed in the section V of the paper.

As an example, assume that the initial index is the pruned
index from table I and we have the user written document:
”Today I was at the market”. The following assumptions are
made:

• the general OCC TH is 2 (same as before)

• the USER OCC TH is 0, s.t. all user words are
inserted in the index.

• the index is pruned, s.t. no words with frequencies less
than OCC TH appear in it.

TABLE II: Example of User-Oriented Index pruned with
OCC TH = 2 and USER OCC TH = 0

Word Posting List
i 1 : [1], 3 : [1], 101:[2]
the 1 : [5], 2 : [1], 3 : [7], 101 : [5]
market 1 : [6], 2 : [2], 3 : [8], 101 : [6]
people 2 : [6], 3 : [5]
today 101 : [1]
was 101 : [3]
at 101 : [4]

• document ids are used (i.e. instead of doc1, doc2, ...
we use 1, 2, ... ) with an UserDocumentMask of 100.

The resulting User-Oriented Index is presented in table II.

Query processing works the same as for the simple Inverted
Index. The difference between the systems is at the ranking
level.

C. Building the Index

Building the index involves a two step procedure.

1) Pre-process step to convert all text to lowercase, split
the text in words and remove any word that contains
non-alphabetical characters (a-z).

2) Indexing step to record for each word output in step
1 the document ID and position in the document.

The algorithm for reading a file and appending its contents
in the index is presented in algorithm 2. The procedure is split
in two separate functions. The preprocess function 1 cleans
the raw contents from the file, and remove any words that
are contain non-alphabetical characters. The second function,
appendToIndex 2, reads the contents of the file, calls the
preprocess function in order to clean the contents, and then
appends all the words to the index using an update function.

Algorithm 1 Preprocess build step
1: function PREPROCESS(rawContent)
2: processed← []
3: for all word in rawContent.split() do
4: if word.isAlpha() then
5: processed.append(word.lower())

return processed

Algorithm 2 Index construction algorithm
1: function APPENDTOINDEX(index, filePath)
2: rawContet← read(filePath)
3: preprocessed← PREPROCESS(rawContent)
4: isUserDoc← CHECKUSERDOC(filePath)
5: docId← GETLASTDOCID(index)
6: if isUserDoc then
7: docId← docId+ userDocumentMask
8: docPosition← 0
9: for all word in preprocessed do

10: UPDATE(index,word, docId, docPosition)
11: docPosition← docPosition+ 1

return processed



D. Storage and Encoding

Encoding (or compression) [7] is a commonly used method
to reduce the size of a data model. Although in general smaller
data models are preferred, we did not use any compression
or encoding for our index. The reason for this is that we
want to focus on having small run times for queries, therefore
the whole model should be loaded into the main memory,
so minimizing the storage size is not that important. The
important thing is to have a small uncompressed index size,
without introducing an additional decompression step that
takes CPU cycles. This is ensured by the varying occurrence
threshold. Nevertheless, we tried different encoding techniques
like Variable Byte Encoding and Run Length Encoding, but
due to the structure of our model, these are only able to encode
word position lists as document IDs are keys in a dictionary.
A comparison between the techniques is presented in table V
of the Experiment and Results section.

V. QUERY PROCESSING AND RANKING

A. Word Retrieval

A query to the system consists of a set of previous words
and the first letters of the desired word. After receiving a
query like this, we first search for all the words that start with
the given letters. To keep runtimes as low as possible, we
deploy a binary search technique on the words in the index
(for this, the index needs to be sorted!). An illustration of
this algorithm (Bidirectional Group Boundary Identification,
or BGBI on short) can be seen in figure 2. In this example we
search for all entries that start with ab.

The BGBI algorithm employs the following strategy:

1) find any word that starts with the given group of
letters (FL) using binary search.

2) create two position sentinels:
a) one of them decreases until the word on the

current position no longer matches the FL
group (st)

b) the other increases until the word on the
current position no longer matches the FL
group (end)

3) return all words with positions in the range created
by the two sentinels.

We called it the Bidirectional Group Boundary Identification
(BGBI) because it identifies the boundaries for the group of
words that start with the same letters by searching in two
directions (bidirectional).

Fig. 2. Illustration of BGBI algorithm

This algorithm keeps the query processing time small even
for huge data sets due to the search space reduction. On
average, there is a 80% reduction in execution time when using
this algorithm compared to a linear filtering algorithm. See
more results in the section VI of this paper.

B. Ranking

The next step is to rank the retrieved words. Our ranking
approach considers both the initila and use. In order to do
so, our ranking algorithm computes the score as the average
distance between the wanted word positions and the positions
of the previous words (freqScore), multiplied by the influence
of user documents. We defined this influence in terms of
a userInfluence variable and the word’s frequency in user
documents (uOcc). Thus the resulting score is computed by
equations 3 and 4:

freqScore(w,PW ) =

∑
docId dist(w,PW, docId)

freq(w)
(3)

score(w,PW ) = freqScore(w,PW ) ∗ userInfluenceuOcc

(4)

Because we compute our scores based on the distance
between words, smaller scores are considered better. As we
want a word that appears in user documents to get a better
score, we have to minimize it. We do this by giving values
between 0 and 1 to the userInfluence variable, and applying
equation (3) to the general score freqScore.

In practice there are situations when no words that match
the first letters have any common documents with the previous
words. In this case we propose that any words that match
the letters are returned, and these are ranked using a naive
frequency based ranking.

VI. EXPERIMENTS AND RESULTS

This section starts by presenting two metrics for computing
the word distances in documents (the dist() ranking function),
followed by a comparison between utilization of the Simple
vs. User Oriented index models. In the entire section, we
are mainly interested in measuring the precision, recall and
runtimes obtained by the different solutions. For computing
precision and recall, we use the rank-based metrics 5 and 6,
introduced by Nandi et al. [1]:

RankPrecision =

∑
1/rank(accepted autocompletion)

n(predicted autocompletion)
(5)

RankRecall =

∑
1/rank(accepted autocompletion)

n(queries)
(6)

A. The dist() ranking function

We discuss different approaches to computing the distance
between two words in a document. We implemented two
variations:

• Simple Linear Distance: computes the simple linear
distance between the words. i.e. returns abs(pos(w1) -
pos(w2))



• Gaussian Distance using Normal Distribution (ND):
computes the Gaussian distance between the two
words using the ND function.

We argue that the Gaussian distance should perform better,
as there are cases in which a word that is in the middle of the
previous words gets better ranking than one that is immediately
after one of them. For example, consider the scenario in figures
3a and 3b. The possible completion word positions are marked
with * and the positions of previous words represent the mean
of the ND functions. It is clear that the second word (the one
right after the blue ND) should be preferred, as it is directly
after a previous word.

The linear distance clearly favors the word between the
NDs, as the other one has a much bigger distance to the left-
most ND mean. In the case of the Gaussian distance, the left-
most ND has no influence on either words, as both of them
are outside its area. Thus only the right-most ND function is
used to compute the score, and this favors the second word.

In our experiments, we observed that the distances between
positions of words queried for auto-completion are large
(around 500 word positions). This makes the Gaussian distance
impractical, as the standard deviation of the ND function has
to be greater than 0.25*DocLength (we deduced this from
experiments) in order to be able to rank the desired words
correctly (i.e. the ND has to spread on over a quarter of the
document length). This gives the same results as the linear
distance, as most words are influenced by all the NDs.

A short comparison in terms of precision, recall and
runtime for the two methods is presented in table III.

TABLE III: Comparison of distance function implementations

Distance Function Precision Recall Runtime
Gaussian 77% 71% 8 ms

Linear 77% 71% 3 ms

We therefore decided to use the linear distance, as the
results are the same and there are less computations made,
thus saving some CPU cycles.

B. Simple Index vs. User Oriented Index

In order to properly compare the two data models, we
conducted our experiments on three data sets.

The first one is a small data set consisting of blog and
news articles together with user-written Facebook messages
in the Romanian language (further denoted by SmallRo). This
set contains 72,000 words, and takes 3 MB of disk size. We
used a web crawler to gather the blog and news articles. The
Facebook messages belong to one of us.

The second data set is a bit bigger, and it consists of some
random Wikipedia articles, and user written documents on
Software Products in the English language (further denoted
by MediumEn). This set has 1 million words and takes 6 MB
of disk space. We downloaded the Wikipedia articles, and the
documents for Software Products are written by one of us.

The third data set is large, and consists of documents
written in English, on different topics: Woodworking, Fitness,

Cycling, Computer games, Gadgets, Phone and Notebook re-
views, Chemistry, Math, Web technologies, Economy, Travel,
Food recipes, etc. This set spreads on over 7.4 million words,
and has a size of 46 MB. We obtained the documents from
different web sources using a web crawler. For this data set,
we consider that a possible user has documents written on the
following topics: Chemistry, Food recipes and about traveling
in India. We shall refer to this data set as BigEn.

We ran all experiments on an Intel i7 dual core, 3.7 MHz
processor with 8 GB RAM memory, using the Python pro-
gramming language. After building the data models, we stored
them in json format, without any compression or encoding.
One can also use a low-cost database like MongoDB to store
the models, but we found it easier to keep them in a simple
text file.

We built our User-Oriented Index, considering that all user
document from our data sets are written by one user, and the
Simple Index from all the data sets, and compared the building
times, size on disk and the number of words and documents
in the index. The build results are shown in table IV. We use
the previously discussed occurrence thresholds for our builds
(OCC TH = (1) and USER OCC TH = (2)).

The varying threshold becomes much higher with larger
data sets (e.g. 186 for the large English data set), thus less
words occur in the index. It can be seen that for smaller sets
the threshold is more permissive. Also, the fact that we use a
different threshold for user documents allows more words into
the User Oriented index. We set the value of our user influence
variable to userInfluence = 0.2

TABLE IV: Comparing build measurements for the Simple
Index and the User Oriented Index

Data Set Model Build
Time

Size nWords nDocs

SmallRo User
Oriented

9 s 4.3
MB

22205 120

Simple 6 s 1 MB 19166 120

MediumEn User
Oriented

8 s 6.5
MB

4011 230

Simple 6 s 1 MB 2276 230

BigEn User
Oriented

82 s 48 MB 16512 3550

Simple 138 s 7 MB 2183 3550

As expected, our User-Oriented index grows in size due to
the extra information about word positions it stores. A method
to avoid this is splitting the index into smaller indexes based
one some features like the topic of documents(as we attempt
to do in our future work). Having the intention to reduce this
size, we compared different encoding techniques like Variable
Byte and Run Length Encoding for the large English data set.
The results are presented in table V.

TABLE V: Comparison of different encoding techniques

Measurement RLE VBE No Encoding
Size on disk 42 MB 42 MB 48 MB

Query Runtime 50 ms 120 ms 9 ms



(a) First Word (b) Second Word

Fig. 3. Example of Gaussian Distance vs Linear Distance: First Word represents measurements of both distances for the first possible completion word, while
Second Word for the second possible completion word

The small size reduction is justified by the fact that we
cannot encode document ids, only word position lists. If we
would modify the model to create different lists for document
ids and position lists, then it might be possible to have better
size reduction. i.e., an entry in the index would look like
this: market:{docs: [1, 2, 3, 101], poss: [[6], [2], [8], [6]}
where the first position list in the poss collection corresponds
to the first document in the docs collection. Although this is
a direction to be investigate, we focus for now on obtaining
high precision and small runtimes, and not using any encoding
seems to be the best choice.

We build both our User-Oriented Index and the simple
Inverted Index for all datasets, and test each model. Test
documents represent documents from Facebook messages for
the SmallRo data set, Software Products for MediumEn, and
Food recipes for the BigEn. We consider all test documents as
user-written. We did not use any encoding at this step.

Although we generally consider a word to be predicted
correctly if it appears in the first three positions of the resulted
list, we still prefer that it appears on the first position, thus
penalizing the second and third positions using the above
metrics.

In order to test the system, we pass over the test documents
with sliding window of 3. The first two words represent the
previous words of the query, and the third one is the desired
word. We consider the first 4 letters of the desired word for
querying, and then check which (if any) of the words in the
resulted list correspond to the desired word.

The results are presented in table VI.

TABLE VI: Precision, Recall, RT comparisons for the two
models

Data Set Model Precision Recall Runtime
SW
Products

User Oriented 89% 87% 1
Simple 71% 61% 1

Facebook
Messages

User Oriented 80% 78% 4
Simple 71% 68% 4

Food
recipes

User Oriented 84% 82% 6
Simple 76% 66% 6

As it can be seen, the User Oriented model behaves better
in all of our tests, outperforming the simple model with 18%
on the Software Products dataset and 8% on the big dataset
with user documents on Food recipes. The interpretation is that
a user-specific solution, that favors user-written words, is able
to rank them with higher precision

Another important aspect to follow is the speed of learning
users behavior. To estimate this, we plotted learning curves of
retrieval performance against the amount of indexed words for
the BigEn data set (Precision: figure 4, Recall: figure 5) and
the MediumEn data set (Precision: figure 6, Recall: figure 7).

We observed that both the User Oriented and Simple Index
systems learn when content that is relevant to the tests (e.g.
content from the same discussion) comes in. The difference
is that the User Oriented system has a bigger learning step.
For example, consider the Software Products data set in figure
6. One can see that around 3000 words relevant content is
indexed. Our User Oriented system boosts up its precision with
around 20%, while the Simple Index system only with 13%.

The reason why the learning plots achieve better results
compared to the ones in the tables is that the OCC TH is more
permissive. i.e. we prune based on how much we learned until
now, while when building the whole model at once we prune
based on the whole data-set size.

We also compared the runtime of the Bidirectional Group
Boundary Identification (BGBI) algorithm with that of a linear
word retrieval that uses a filter, by plotting them as a function
of the number of words indexed so far. This graph is shown in



Fig. 4. Precision comparison between Simple Index and User Oriented Index
on BigEn

Fig. 5. Recall comparison between Simple Index and User Oriented Index
on BigEn

figure 8 below. One can see how the BGBI runtime increases
much slower compared to the linear retrieval runtime (this
actually goes over 200 ms). It is important to note that the
varying OCC TH assures that the index size stays small, and
this results in smaller runtimes as well.

Fig. 8. Comparison of the BGBI algorithm and a Linear Filter

Fig. 6. Precision comparison between Simple Index and User Oriented Index
on MediumEn

Fig. 7. Recall comparison between Simple Index and User Oriented Index
on MediumEn

VII. CONCLUSION

In this paper, we introduced an extension to the commonly
used inverted index, called the User Oriented Index, which
stores user information at document level by using id masks.
Together with a new ranking strategy that makes use of this
information, our solution improves the learning capabilities of
an auto-completion system by up to 35%, and increases the
performance with 18%. Finally, we present a word retrieval
technique, called the Bidirectional Group Boundary Identifi-
cation (BGBI), that is based on the Binary Search algorithm.
By using the BGBI algorithm, we reduced the query processing
times by up to 80% compared to a linear retrieval that uses a
filter function.

REFERENCES

[1] Arnab Nandi and H. V. Jagadish: Effective Phrase Prediction. VLDB
’07 Proceedings of the 33rd international conference on Very large data
bases Pages 219-230

[2] S. Card, G. Robertson, and J. Mackinlay. The information visualizer,
an information workspace. Proceedings of the SIGCHI conference on
Human factors in computing systems: Reaching through technology,
pages 181186, 1991.

[3] R. Miller. Response time in man-computer conversational transactions.
Proceedings of the AFIPS Fall Joint Computer Conference, 33:267277,
1968.



[4] H. Bast and I. Weber: Type Less, Find More: Fast Autocompletion
Search with a Succinct Index. SIGIR ’06 Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval

[5] Milad Shokouhi: Learning to personalize query auto-completion, Pro-
ceedings of the 36th international ACM SIGIR conference on Research
and development in information retrieval Pages 103-112

[6] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schtze.
Introduction to information retrieval. Vol. 1. Cambridge: Cambridge
university press, 2008.

[7] : Trotman, Andrew. ”Compressing inverted files.” Information Retrieval
6.1 (2003): 5-19.

[8] P. Krishnan, J. Vitter, and B. Iyer. Estimating alphanumeric selectivity
in the presence of wildcards. Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, pages 282293, 1996.

[9] Carmel, David, et al. ”Static index pruning for information retrieval
systems.” Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM,
2001.


