
A language independent user
adaptable approach for word auto-
completion
Stefan Prisca

Technical University of Cluj-
Napoca,

Department of Computer Science,
Email:

stefan.prisca@gmail.com

Rodica Potolea

Technical University of Cluj-
Napoca,

Department of Computer Science,
Email:

rodica.potolea@cs.utcluj.ro

Mihaela Dinsoreanu

Technical University of Cluj-
Napoca,

Department of Computer Science,
Email: mihaela.dinsoreanu@cs.

utcluj.ro

Introduction
● auto-completion is more and more frequent

○ e.g. query completion in search engines, code
completion in IDEs, word/phrase completion in text
editors etc.

● most offline auto-completion systems either provide
completions based on
○ the document at hand (user-written) or
○ a default set of documents (default)

Objectives
Design
● Language Independency
● Phrase and Word

Completion Integration
● Easy Install

Auto-completion
● User Adaptable

Completions
● Fast Query Processing

Conceptual Design -
Achieving design objectives

● Decouple the data models from auto-
completion processors, which allows to
switch between data models at runtime
○ => Language Independency

● Separate Word Autocompletion and
Phrase Autocompletion sub-systems
○ => Word and Phrase auto-

completion integration
● Public API to connect to a text editor

○ => Easy Install

Objectives - auto-completion
● User Adaptable completions

○ provide both user-written and general auto-
completion

○ prioritize user-written documents
● small query processing times!

○ research shows that for something to appear instantaneously to the
human eye, it needs to appear in less than 100 ms.

Getting serious...
Formalizing word auto-completion
● All possible proposals (words) are stored in an auto-

completion data model (e.g. an Inverted Index or Suffix
Tree)

● Word Completion is the problem of predicting a word
given a set of previous words (PW), and the first letters
(FL) of that word.

● This is passed to the system in the form of a Query:
Q:{PW:[w1, w2], FL:”l1l2… ”}

● e.g.: I am go… => Q:{PW:[I, am], FL:”go”}

● Our word completion system relies on the Inverted
Index data structure

● Query processing:
○ Find all words that start with FL => matched words
○ Return all matched words that have common documents with

PW

Word Auto-completion

Word Posting List

<word> [<docId1>, <docId2>, ...]

The Inverted Index
Consider the documents:
1. ”I am going to the market”
2. ”The market is filled with

people”
3. ”I hate it when people fill the

market”
● Italics mark words with

occurrence thresholds < 2

i [1, 3] is [2]

the [1, 2, 3] filled [2]

market [1, 2, 3] with [2]

people [2, 3] am [1]

going [1] hate [3]

to [1] it [3]

when [3] fill [3]

Query:In the mar {PW:[in, the], FL:”mar”} Answer: market

Default and User Predictions
● Need to identify user and general documents:

○ General Documents = documents that are not
written by the user, and that are used for initial
predictions

○ User Documents = documents that are written by the
user, after using the system for a while.

Default and User Predictions
● Use document ids to separate between user documents

and general documents:
○ User Documents are incremented with a

userDocMask
● Allow more user words within the index
=> An altered version of the Inverted Index, which is called
User Oriented Index.

○ We also store information about word positions in documents. This is
used for ranking, and will be explained.

The User Oriented Index
1. Default: ”I am going to the market”
2. Default: ”The market is filled with people”
3. Default: ”I hate it when people fill the market”
4. User written: ”Today I was at the market”.

● userDocMask = 100
● Occurrence Th = 2, User Occurrent Th = 0

i [1, 3, 4]

the [1, 2, 3, 4]

market [1, 2, 3, 4]

people [2, 3]

I {1 : [1], 3 : [1], 101:[2]}

the {1 : [5], 2 : [1], 3 : [7], 101 : [5]}

market {1 : [6], 2 : [2], 3 : [8], 101 : [6]}

people {2 : [6], 3 : [5]}

today {101 : [1]}

was {101 : [3]}

at {101 : [4]}

Inverted Index User Oriented Index

The User Oriented Index
● extension of the Inverted Index
● Identify user documents with a

userDocMask:
○ General Document (initial

prediction)
docId < userDocMask

○ User document (user-written):
docId >= userDocMask

● Store positions on which words
appear in documents
○ create word contexts
○ compute word frequency

● Allow more words from the user in
the index

<word> {<docId> : [<postitions>]}

● doc1: “I am going to the market”
● doc2: “The market is filled with people”
● doc3: “I hate it when people fill the market”
● userDoc: “Today I was at the market”

i {1 : [1], 3 : [1], 101:[2]}

the {1 : [5], 2 : [1], 3 : [7], 101 : [5]}

market {1 : [6], 2 : [2], 3 : [8], 101 : [6]}

people {2 : [6], 3 : [5]}

today {101 : [1]}

was {101 : [3]}

at {101 : [4]}

Word Auto-completion
Ranking

1. Frequency Score:

● dist() = the distance between all positions of a possible
completion w and the previous words, in a given
document

● freq(w) = the number of times word w appears in all
documents

Word Auto-completion
Ranking

2. User Score:

● userInfluence = variable that we find experimentally
● uOCC = the number of times the word w appears in

user-written documents

Word Retrieval
● Fast query processing means fast word

retrieval
● Index can grow up to tens of thousands of

words => good word retrieval algorithm
required to ensure that even with huge sizes
(~ 100k words), retrieval times are below
100 ms

Word Retrieval
● The retrieval problem: retrieve a group of

words, all of which start with a given prefix
● We based our word retrieval on the binary

search algorithm
○ requires the index to always be sorted
○ reduces search times to O(log n).

=> Bidirectional Group Boundary Identification

Word Auto-completion - Word Retrieval:
Bidirectional Group Boundary Identification

1. find any word that starts with the given
group of letters using binary search.

2. create two position sentinels:
a. one of them decreases until the

word on the current position no
longer matches the letter group
(st)

b. the other increases until the word
on the current position no longer
matches the letter group (end)

3. return all words with positions in the
range created by the two sentinels.

Testing - Data Sets
● Ro Small – 72.000 words, collected from

blog articles and User FB messages
● En Medium – 1 million words, collected from

wiki articles and User SW docs
● En Large – 7.4 million words, various web

articles, with user documents about Food
recipes.

Metrics
● Mean Reciprocal Rank metric for precision

and recall:

Results
Simple Index vs User Oriented Index

Data Set Model Precision Recall Runtime (ms) Size (MB)

FB Messages
(Ro Small)

User Oriented 80% 78% 4 4.3

Simple Index 71% 68% 4 1

Sw Products
(En Medium)

User Oriented 89% 87% 1 6.5

Simple Index 71% 61% 1 1

Food Recipes
(En Large)

User Oriented 84% 82% 6 48

Simple Index 76% 66% 6 40

User Oriented Index
- Learning

● the User Oriented system has a
bigger learning step.

● around 3800 words both systems
learn relevant content:
○ User Oriented increases its

precision with 20%
○ Simple Index increases its

precision with 13%.
● => learning capabilities

increased with 53% over the
Simple Index

Bidirectional Group Boundary
Identification - Runtime comparison

● BGBI keeps low
runtimes even with
large indexes

● => on average, it
reduced the word
retrieval runtime with
80%

Conclusion
● Presented a language independent system design for word

and phrase auto-completion
● Introduced a data model that increases the performance of

word auto-completion systems by learning from the user
(User-Oriented Index)

● Developed a fast binary search algorithm that decreases
word retrieval time by 80% (Bidirectional Group Boundary
Identification)

