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Abstract—This paper introduces a first attempt to perform 

phoneme-level segmentation of speech based on a perceptual 

representation -- the Spectro Temporal Excitation Pattern 

(STEP) -- and a dimensionality reduction technique -- the t-

Distributed Stochastic Neighbour Embedding (t-SNE). The 

method searches for the true phonetic boundaries in the vicinity 

of those produced by an HMM-based segmentation. It looks for 

perceptually-salient spectral changes which occur at these 

phonetic transitions, and exploits t-SNE's ability to capture both 

local and global structure of the data. The method is intended to 

be used in any language and it is therefore not tailored to any 

particular dataset or language. Results show that this simple 

approach improves segmentation accuracy of unvoiced phonemes 

by 4% within a 5 ms margin, and 5% at a 10 ms margin. For the 

voiced phonemes, however, accuracy drops slightly. 

Keywords— phonetic segmentation; STEP; t-SNE; HMM 

acoustic model; k-Means. 

I.  INTRODUCTION 

The basic unit of speech production and perception is 
widely accepted as being the phoneme. Knowing the exact 
location of the phones and their boundaries is essential for 
some applications using machine learning algorithms to 
process speech data. However this is not a trivial task, as even 
in manual segmentation the inter-labeller agreement as to 
where the phone boundaries should be placed is around 93% 
[1] within a 20 ms margin. 

Accurate phonetic segmentation might not be as important 
in all speech-enabled applications, such as those based on 
stochastic training algorithms like HMM-based speech 
recognition or synthesis. But it is essential in newly developed 
fields, such as automatic lip-syncing [2], where even a few 
milliseconds deviation from the boundary might lead to 
unnatural output. 

 Previous studies on phonetic segmentation have considered 
various methods and feature sets. The most common method 
for this task is forced alignment with HMM acoustic models 
[3], with slight variations in the training [1, 4] and decoding 
[5,,6] methods, or the feature sets used [7, 8]. One drawback of 
this category of methods is the need for a phonetic transcription 
of the speech data. When the phonetic string is not known, 
variations in the spectral and temporal features, or 
representations of speech called landmarks, are one basis for 
estimating phone boundaries [9, 10, 11]. More recent studies 

have also exploited the capabilities of Deep Belief Networks to 
estimate the posterior probabilities of phone categories and to 
then assign boundaries to frames where there is uncertainty in 
assigning a phone class [12].  

What differentiates our work from these previous 
approaches is that we try to avoid tailoring our method towards 
a particular language or speech database. Therefore, although 
our results do not achieve the same accuracy as the best 
methods evaluated on the same dataset, namely TIMIT [13], 
the method can be easily extended to a variety of other speech 
resources. The core of our method relies on the fact that 
spectral discontinuities are in most cases a good indicator of a 
phoneme boundary, even when these transitions are smooth, 
such as in the case of diphthongs. In this respect, our method 
would fall into the landmark category of phonetic alignment, 
but we also use the forced alignment as a reference to limit the 
search space for these landmarks. Computing distances 
between consecutive frames in high-dimensional acoustic 
feature space is subject to the so-called “dimensionality curse”, 
in which the number of equally distanced data points grows 
exponentially with the number of dimensions [14]. Therefore, 
we first reduce the dimensionality of the acoustic space to 2 or 
3 dimensions. One other aspect to be noted is the fact that 
variations in the parametrisation vectors do not necessarily 
correspond to salient acoustic changes. Therefore, a perceptual 
representation of the speech signal is used. Both the 
representation and the dimensionality reduction method are 
presented in Section II, and the evaluation of their performance 
is presented in Section III. 

II. PROPOSED PHONETIC SEGMENTATION 

The proposed method uses the Spectro Temporal 

Excitation Pattern (STEP) parametrisation, reduced in 

dimension by t-Distributed Stochastic Neighbour Embedding 

(t-SNE). This section describes the details of both STEP and t-

SNE, followed by an overview of the processing flow for the 

phonetic segmentation. 

A. STEP 

The STEP representation was originally proposed in the 
context of the Glimpse model for speech perception in noise 
[15]. The model is motivated by the ability of humans to obtain 
information from time-frequency regions where speech is not 
masked by noise and therefore less distorted. The Glimpse 
Proportion (GP) measure proposed in [16] is based on this 
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concept: in a noisy environment, humans focus their auditory 
attention on „glimpses‟ of speech that are not masked by noise.  
To detect such glimpses, the STEP representations of speech 
and noise are compared. The GP correlates well with subjective 
scores for intelligibility of both natural [16] and synthetic 
speech [17] in a variety of noises. 

To represent a signal in terms of STEP we first decompose 
its waveform into different frequency channels using a 
Gammatone filterbank whose central frequencies are linearly 
spaced on the Equivalent Rectangular Bandwidth (ERB) scale 
[18]. For each channel, the temporal envelope is extracted with 
an absolute value operation, smoothed with a low pass filter 
and then averaged across limited time intervals. 

B. t-SNE 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[19,,20] is a dimensionality reduction technique targeted 
mostly at high-dimensional data visualization. As opposed to 
other dimensionality reduction algorithms, t-SNE is capable of 
capturing both local and global structure of the data. This 
allows for visualizing similar data points in local regions, or 
globally-emerging clusters.  

t-SNE is a variation of Stochastic Neighbor Embedding 
(SNE) [21] which converts pairwise Euclidean distances in N-

dimensional space, to joint probability distributions. Given a 

set of N-dimensional data points  
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variance of the Gaussian distribution centered on datapoint xi, 

and pii=0. 

The low-dimensional mapping obtained by t-SNE, 
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where 
2

ij i j
d y y   is the low-dimensional norm, and 

qii=0. The obtained mapping minimizes the Kullback-Leibler 
divergence with respect to the high-dimensional distribution, 
using a gradient descent method. 

C. Phonetic Segmentation with STEP and t-SNE 

A baseline forced-alignment using HMM models provides 
a good set of reference points near which the true phone 
boundaries should be located. The proposed method searches 
for the correct phonetic boundary in the vicinity of these 
reference points.  

Each utterance is processed individually by first extracting 
the STEP features as detailed in Section II-A. The STEP 

 
 

Fig. 1. t-SNE 2D mapping of the utterance “The reasons for this dive 

seemed foolish now”, and the Praat visualisation of the waveform, 

spectrogram, and manual annotation. The axes represent the 2 t-SNE 

dimensions. 

 

 
 

Fig. 2. Praat visualisation of the waveform, spectrogram, and manual 

annotation of the utterance “The reasons for this dive seemed foolish 

now”. 

 

 
 

Fig. 3. Example of a k-Means clustering result in the vicinity of a forced-

alignment boundary. Different colors represent different phone identities 

as determined by the forced alignment, while the numbers represent the 

clusters to which each point has been assigned. The axes represent the 2 t-

SNE dimensions. 



features are then scaled by subtracting the mean and scaling to 
unit variance. This ensures a uniform distribution of the 
features across the utterances, removing speaker characteristics 
to some extent. 

Afterwards, the t-SNE dimensionality reduction method is 
applied over the STEP features. As t-SNE is stochastic, the 
results from successive runs may vary slightly. To mitigate, we 
run t-SNE 5 times for each utterance. The best run is selected 
by using the k-Means clustering algorithm. k-Means is applied 
to a subset of frames located around the baseline forced-
alignment boundary, starting from the previous t-SNE+STEP 
boundary1 to the next forced alignment segment boundary.   

The best run is considered to be the one in which the 
maximum distance between consecutive frames assigned to 
separate clusters is obtained (see Figure 3). This best run may 
vary from boundary to boundary, and therefore independent 
representations are maintained for each of them. 

Figures 1 and 4 show an example of a 2D t-SNE 
representation at the utterance level, as well as around a phone 
boundary in the data. In Figure 1, it can be observed that the 
different phone identities tend to cluster together at a global 
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level, while Figure 4 shows the spectral changes that can occur 
within the same phonetic segment.  

This dimensionality reduction enables computation of the 
Euclidean distance between successive frames, without the 
curse of dimensionality. Therefore the maximum distance 
between consecutive frames in the neighborhood of the forced 
alignment window is assigned to be the new phone boundary 
(i.e. /v/). Of course, there is a possibility that the window 
centered on the initial alignment does not include the true 
boundary, and therefore our method cannot correct it. 

III. EVALUATION 

A. Data 

In line with previous studies on phone-level segmentation, 
we selected the TIMIT dataset [13, 22] as a reference for our 
evaluation. It comprises approximately 5.5 hours of recordings 
of phonetically-balanced prompted speech uttered by 630 
speakers in 8 major dialects of American English.  The dataset 
is split into a training and a testing set. Excluding the dialect 
calibration tests  (i.e., the sa sentences), the training set 
contains 3696 utterances from 462 speakers, approximately 
3.14 hours of data; and the test set contains 1344 utterances 
from 168 speakers, approximately 1.5 hours of data. The 
dataset is sampled at 16 kHz with a 16 bit resolution. The 61 
phones used in the annotation of TIMIT were mapped to the 
CMU Pronouncing Dictionary2, resulting a set of 40 phones. 
The silence segment boundaries were excluded from the 
evaluation, yielding a total of 40,516 segment boundaries in the 
test set. 

B. Baseline Alignment System 

HMM acoustic model-based alignment is widely used in 
both speech synthesis and recognition systems, and considered 
to be accurate enough not to affect the performance of the 
resulting system. However, when compared to manual 
segmentation, its accuracy within a 20 ms threshold is 
somewhere between 80-90%, depending on the features or the 
training method used [1]. The best results obtained using 
HMMs for phonetic segmentation on the TIMIT database are 
reported in [4] and establish an alignment accuracy of  96.7% 
within a 20 ms margin. However these models are tuned for the 
TIMIT database itself, and when using other datasets the 
models would have to be tuned once again, which is 
computationally complex and resource consuming.  

                                                           
2 Available online: http://www.speech.cs.cmu.edu/cgi-bin/cmudict. 

 
Fig. 4. Example of a 2D t-SNE representation at a voiced-unvoiced 

boundary. The axes represent the 2 t-SNE dimensions. 

 

 
 

Fig. 5. Praat visualisation of the waveform, spectrogram and manual 

annotation at a voiced-unvoiced boundary type. 

TABLE 1. Accuracy of the forced-alignment phone boundary assignment 

for the MFCC and MFCC+STEP acoustic models at 5, 10, 20 and 50 ms 

threshold. 

 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

MFCC 39.68 56.76 83.34 92.33 

STEP 37.12 55.22 80.00 89.76 

MFCC+STEP 42.93 62.53 84.29 94.17 

 



We therefore start from a baseline forced-alignment of the 
TIMIT training set speech data with HMM acoustic models. 

Three separate models were built: one using standard 13 

MFCCs with energy, delta and delta-deltas; one using 34 
STEP with energy, delta and delta-deltas; and one using both 

the MFCC and STEP representation: 34 STEP coefficients 

extracted at each 5 ms frame  and 13 MFCCs. Energy, delta 
and delta-deltas were appended to the fused features. All 
acoustic models used a 5 state, left-to-right, context-
independent HMM for each phone.  

The manual segmentation was not used for model training, 
but instead an iterative alignment and training procedure was 
performed. So, the results of the method will generalise to 
datasets with no manually annotated training set.3 

To extract STEP, we used 34 Gammatone filters whose 

central frequencies covered the range of 100-7500 Hz and the 
temporal integration time for the smoothing filter was of  (8 

ms). The original STEP representation was calculated with 
non-overlapping time frames using rectangular windows, but 
for a smoother trajectory we calculate it using a F0 adaptive 
window as in [24] of 40 ms length and 5 ms shift. 

C. Results 

All the results reported in this section are measured against 
the manual segmentation of the test set data from the TIMIT 
database. The threshold, given in milliseconds, represents the 

                                                           
3 In [23] the authors report only 2% difference in accuracy at 20 ms threshold 

for their highly tuned models: the iterative training procedure is likely to 

produce similar results to the fully supervised one. 

allowed deviation of an estimated phone boundary from the 
manual annotation. The values selected for the threshold are 5, 
10, 20 and 50 ms, as used in previous studies of phonetic 
segmentation. The accuracy is computed as the number of 
estimated phoneme boundaries lying within the threshold, 
divided by the total number of boundaries.  

1) Comparing baselines 

A first evaluation of our method concerns the features used 
for the HMM-based acoustic model training. The results of 
using either MFCC, STEP or a fusion of MFCCs and STEPs 
are presented in Table 1. The acoustic models which use only 
STEPs perform worse than the ones with MFCCs, and this 
might be caused by the fact that although STEPs are better 
suited for perceptual representations, their smoothed 
trajectories limit the method.  However, the fused 
MFCC+STEP models were marginally better at the 20 and 50 
ms threshold, and significantly better at the lower threshold of 
5 and 10 ms. Given this improvement in fine-grained 
segmentation, we selected the MFCC+STEP acoustic models 
as a baseline alignment for the t-SNE and STEP method.  

2) Comparing methods 

The t-SNE is an algorithm designed for data visualization 
in 2D or 3D spaces. But, given its inherent properties, it also 
provides a good dimensionality reduction and clustering 
method. As there is no mathematical way to determine which 
of the two low-dimensional spaces is better suited for this 
scenario, we compared them on our test data, and also against 
the baseline forced-alignment. We also examined the use of 

TABLE 2. Segmentation results for the baseline system, t-SNE with low-

dimensional spaces of 2 and 3 features using STEP and MFCC. 

 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 42.93 62.53 82.29 94.17 

t-SNE 2D+STEP 41.34 59.52 77.73 89.54 

t-SNE 3D+STEP 41.89 60.49 79.90 91.78 

t-SNE 2D+MFCC 38.12 57.00 76.12 88.43 

t-SNE 3D+MFCC 39.72 57.12 77.09 88.20 

 

 

TABLE 3. Accuracy of the segmentation for the voiced and unvoiced 

phonetic categories.  t-SNE uses STEP as the initial feature space. 

 

Voiced phones 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 39.71 59.54 80.59 92.12 

t-SNE 2D 36.88 54.50 73.20 86.16 

t-SNE 3D 38.31 56.28 76.28 89.09 

     

Unvoiced phones 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 41.37 58.79 78.11 89.44 

t-SNE 2D 45.97 63.57 79.23 87.85 

t-SNE 3D 44.81 62.94 79.51 88.58 

 

TABLE 4. Accuracy of the segmentation for the different boundary types. 

t-SNE uses STEP as the initial feature space. 

 

Unvoiced-Unvoiced 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 22.27 35.03 53.58 60.86 

t-SNE 2D 31.70 43.76 54.79 60.26 

t-SNE 3D 30.76 42.52 54.46 60.65 

     

Voiced-Unvoiced 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 41.85 59.34 79.25 87.89 

t-SNE 2D 46.77 64.27 79.02 86.69 

t-SNE 3D 45.69 63.55 79.41 87.34 

     

Unvoiced-Voiced 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 42.32 63.36 81.76 87.84 

t-SNE 2D 39.66 58.93 79.40 86.90 

t-SNE 3D 38.80 58.40 79.52 87.06 

     

Voiced-Voiced 

 Accuracy [%] 

System 5ms 10ms 20ms 50ms 

Baseline 36.99 53.91 71.88 87.61 

t-SNE 2D 30.54 42.50 61.28 78.06 

t-SNE 3D 33.55 48.43 66.11 82.46 

 



MFCCs for the phonetic segmentation. The results are shown 
in Table 2. At a first glance, t-SNE appears to increase 
segmentation errors, and when used on top of MFCCs, it 
performs the poorest.  However, by examining the 2D t-SNE 
representations in Figures 1 and 4, t-SNE does seem to be 
capturing the spectral changes which occur at the phone 
boundaries.  

Motivated by this, we investigated the broad phonetic 
categories separately. There are 16 unvoiced phones and 23 
voiced phones in the CMU phoneset, and the data is split into 
35% unvoiced4 and 65% voiced phones. The results for each 
category are presented in Table 3.  It appears that for the 
unvoiced phonemes, the performance of t-SNE+STEP is above 
that of the baseline, especially at the finer grained margins of 5 
and 10 ms.   

Yet it is also important to look at the boundary types and 
analyse their individual accuracies. We split them into four 
categories based on the neighbouring phoneme identities:  
unvoiced-unvoiced, unvoiced-voiced, voiced-unvoiced and 
voiced-voiced. The percentage of each boundary type within 
the test set are shown in Figure 6, while the alignment results 
for each of the categories are shown in Table 4.5 There is once 
again a distinction between the performance of our method and 
the baseline alignment for different boundary types. For the 
unvoiced-unvoiced and voiced-unvoiced types, especially at 
finer grained thresholds (i.e., 5 ms and 10 ms), our method 
outperforms the baseline alignment; in the other two cases, the 
baseline achieves a smaller error. 

3) Discussion 

As seen in the previous Section, our proposed method can 
identify the starting point of unvoiced phonemes with better 
accuracy than the baseline forced-alignment system, but it does 
not do such a good job at identifying the starting points of 
voiced phonemes. One explanation would be that there is less 
abrupt spectral change at the start of this phonetic category. A 
solution would be to adapt the distance measure between 
consecutive frames according to the boundary type.  The fact 
that the 3D representation achieves slightly better results than 
the 2D for the voiced-voiced boundary type could also mean 
that such reduced dimension spaces cannot entirely capture 

                                                           
4Excluding silence segments. 
5
In Table 3  the segmentation results are for the case when the voiced or 

unvoiced phoneme is at the right hand side of the boundary. This means that it 

only evaluates the starting point of the phoneme. 

these transitions, and that perhaps a combination of t-SNE with 
some other feature reduction algorithm would be beneficial. 

There is also a ceiling effect to be noticed in the case of 
unvoiced-unvoiced boundaries, where the baseline alignment 
even at a 50 ms threshold has an accuracy of only 60.86%. This 
means that the search for the true boundary using the t-
SNE+STEP method was not executed within a correct window, 
thus limiting its potential accuracy. 

IV. CONCLUSIONS 

This paper introduced an approach to phonetic 
segmentation using a perceptual feature set, STEP and a 
dimensionality reduction method, t-SNE. These first results 
show that the combination of these two methods yields better 
results in the detection of unvoiced phone boundaries, although 
voiced phone boundaries are more accurately located found 
using the baseline method. However, the fact that the method 
does not rely on any language or database specificities makes it 
feasible for other speech resources as well. As future work, the 
most important development would be in the use of alternative 
or auxiliary features for each phonetic category, and perhaps an 
additional distance measure or spectral change estimator in the 
t-SNE feature space. 
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