
  

 

Abstract — This paper presents a first approach to the 

unsupervised learning and prediction of primary lexical 

stress starting from continuous speech data and its 

orthographic transcript. The approach is intended to be used 

in the development of text-to-speech synthesis systems for 

under-resourced languages. Our method is based on syllable 

nuclei approximation and stress detection using simple 

acoustic features. The evaluation is performed on 3.5 hours 

of speech uttered by a Romanian female speaker and results 

show an accuracy of 47.20% at word level and 58.61% at 

syllable level.  

Keywords — lexical stress, stress detection, stress 

prediction, text-to-speech synthesis. 

I. INTRODUCTION 

exical stress represents one of the most important 

prosodic aspects of speech. Stress patterns in various 

languages determine the overall rhythm and melody of that 

language. While the prosodic accent is speaker or context 

dependent, lexical stress is generally set for each word, 

and in some cases it changes its meaning altogether: for 

example the heteronym: address - /ədrɛˈs/ - to speak to the 

crowd; /əˈdrɛs/ - a postal address. 

Lexical stress is also an important component of text-to-

speech synthesis systems--correct stress assignment over 

the utterance can significantly increase its naturalness and 

intelligibility. However, in most of the world’s languages 

the resources required to train a lexical stress predictor are 

usually not available or insufficient. We therefore propose 

an approach to detect and learn the lexical stress position 

using only speech data and its orthographic transcript. This 

work is part of the SIMPLE4ALL project [1], whose main 

objective is to build text-to-speech synthesis systems with 

little or no expert supervision and knowledge. 

Across the wide variety of languages around the world, 
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the lexical stress’ placement varies largely. If for example 

in Czech, Finnish, Hungarian, and Slovakian the stress is 

always assigned to the first syllable of the word, for other 

languages, such as Romanian or English, there is no 

definite rule, and word etymology or morphology can alter 

it. 

Previous studies related to lexical stress detection from 

acoustic features are mainly focus on isolated words and 

use supervised algorithms to predict. We index here some 

of the most relevant work, but emphasize the fact that we 

are using continuous speech data which was not purposely 

designed for these experiments. 

One of the first studies regarding stress detection from 

spoken data is that of Aull and Zue [2]. Their study 

suggests that lexical stress can improve the accuracy of 

isolated word recognition. Their method determines the 

sonorant syllables from speech, and extracts simple 

acoustic features, such as duration, energy and 

fundamental frequency (F0). These features are then the 

basis for a reference feature vector constructed for each 

category: stressed and unstressed. Using the Euclidean 

distance, the algorithm then determines the classification 

of each syllable. 

In [3] the authors train a Support Vector Machine 

(SVM) classifier with acoustic features such as duration, 

loudness, semitone and spectral emphasis extracted from a 

purposely designed speech database. Their results show an 

accuracy of 88.57% when an additional post-processing 

method is applied. The post-processing includes the 

assignment of a single stressed syllable per word. 

SVM classifiers are also used in [4] and compared 

against decision tree classifiers as well. The study is 

performed for New Zealand English, and uses only the 

vowel segments from which they extract prosodic features, 

as well as vowel quality features. The vowel quality is 

measured in terms of articulatory features, and the study 

suggests that in the unstressed syllables, the vowels tend to 

have a reduced form. The reported accuracy for the 

stressed vowel detection is 84.72%. 

Aside from the automatic detection of lexical stress in 

speech data as a complete method, we also index the 

acoustic features found to be relevant to stress detection in 

general. From the previous cited works, the essential 

attributes for stress detection were found to be: duration, 

intensity and vowel quality, in decreasing order of 

importance. However in [5], F0 level and variation, as well 

as vowel duration and amplitude are found to be correlated 
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with the word-level stress. In [6] the authors confirm these 

correlations for different languages: Brazilian Portuguese, 

English, Estonian, French, Italian and Swedish. The same 

authors also introduce in [7] the use of overall rise in 

intensity and spectral emphasis as correlates to focal 

accent in Swedish. A separate study for Brazilian 

Portuguese showed that syllable duration, total intensity, 

duration, F0 standard deviation and spectral emphasis are 

also a marker for stressed vowels with respect to the 

unstressed ones [8]. Spectral emphasis was also found 

relevant for Dutch [9]. 

To summarize the above studies, prosodic aspects of the 

central vowel of a syllable can be good indicators of the 

syllable’s stress. And we adhere to these findings by 

employing similar features for our unsupervised method. 

One important aspect to be noticed is that in all the 

related work, a training dataset was available, and features 

extracted from this dataset can be easily used in the testing 

or prediction scenario. However, in this paper our aim is to 

learn the features of stressed syllables in an unsupervised 

manner, and without any prior or expert knowledge. This 

means that given a speech corpus and its orthographic 

transcript, we define an algorithm which can automatically 

draw a separation line between stress and unstressed 

syllables, as well as making predictions for unseen words. 

The method comprises two main parts: syllable nuclei 

detection, and a feature extraction and classification.  

Our reported results use Romanian as the main 

language, but our ongoing studies are expanded to other 

languages as well. 

The paper is structured as follows: Section II introduces 

the method used to automatically determine the syllable 

nuclei from the speech data. Section III enumerates the 

features used for our unsupervised classification. The 

results and conclusions of the work are presented in 

Section IV and V, respectively. 

II. SYLLABLE NUCLEI DETECTION 

Lexical stress in most languages is considered to be 

directly related to the syllabic structure of a word. Within 

a syllable, the acoustic realization of the stress is in direct 

correlation with the central vowel, which is also called the 

syllable nucleus. Therefore, a first step in the unsupervised 

detection of stress from the acoustic data is to determine 

the syllable-level segmentation of it. But as syllable 

boundaries are in most cases, even in written language, 

vaguely defined, we turn our attention strictly to the 

approximation of syllable nuclei positions. 

A very good method for the automatic detection of 

syllable nuclei is presented in [10]. The method 

determines the intensity peaks which are preceded and 

followed by intensity valleys or dips. The intensity is 

measured on a logarithmic scale. From the initially 

hypothesized nuclei, those who consist of unvoiced 

regions are then discarded. One of the flaws in this method 

is represented by the fact that unstressed syllable are 

sometimes omitted. However, although in our subsequent 

processing steps this might affect the accuracy of our 

method slightly, we do not consider it to be a major issue. 

 

Fig. 1. Screenshot of the Praat syllable nuclei  

detection script.  

 

In our initial evaluations of the script, the following 

parameter set gave the best results: 

 silence threshold = -25[dB]; 

 minimum dip between peaks = 0.5[dB]; 

 Minimum pause duration = 0.3[sec]. 

As the script provides only the estimated position of the 

syllable nuclei as a time instance, we expand it to an 

interval of 80 [ms] centered on the estimated position, and 

extract the acoustic features from this time interval. Figure 

1 shows a sample screenshot of the script’s output. Tier 

syllables marks the detected syllable nuclei. Tier silences 

represents a voice activity detector, and determines if the 

current segment is speech or silence. Tier intervals shows 

the 80 [ms] window centered around the detected syllable 

nuclei.  

III. FEATURE EXTRACTION 

Once the syllable nuclei have been approximated, and 

using the results of the surveyed studies from Section I, we 

extract the following acoustic features from the 80 [ms] 

window: 

a) fundamental frequency, its maximum and 

minimum values, mean and standard deviation; 

b) intensity, its maximum and minimum values, 

mean and standard deviation; 

c) fundamental frequency converted to semitones on 

the logarithmic scale: 

 𝑆 = 69 + 12 𝑙𝑜𝑔2(
𝐹0

440
) (1) 

d) duration of the syllable nucleus; 

e) first three formant values; 

f) harmonics to noise ratio (HNR) - where PP% is 

the percentage of periodic signal’s energy, and 

NP% is the noisy part of the signal. An HNR of 

0[dB] represents a signal with equal amount of 

periodic and aperiodic energy. HNR is used as a 

measure of vowel quality, and it is computed as: 

                                𝐻𝑁𝑅 = 10 𝑙𝑜𝑔10(
𝑃𝑃%

𝑁𝑃%
)                 (2) 

g) spectral tilt attributes, computed as in [11]. We 

compute the following measures: H1-H2 – 

difference of the amplitude of the first harmonic 

and the amplitude of the second harmonic, which 

is an indicator of the relative length of the 

opening phase of the glottal pulse; H1-A1, the 



 

difference between the amplitude of the first 

harmonic and the strongest harmonic of the first 

formant, and represents the spectral tilt; H1-A2, 

the difference between the amplitude of the first 

harmonic and the strongest harmonic of the 

second formant, the spectral tilt at middle formant 

frequencies; H1-A3, the difference between the 

amplitude of the first harmonic and the strongest 

harmonic of the third formant represents the 

spectral tilt at higher formant frequencies. 

These parameters comprise the feature vector used in 

the lexical stress detection algorithm described in the next 

section. 

IV. LEXICAL STRESS DETECTION 

We again emphasize the fact that our method does not 

rely on an existing purposely designed training dataset, or 

any other form of expert knowledge. Therefore, the 

devised algorithm should be able to automatically 

determine the stressed and unstressed syllables from the 

speech data, and then create a text-based dataset for the 

lexical stress predictor. 

Figure 2 shows the flow chart of the proposed method, 

and we present next its main steps. In order to build a text 

dataset for the stress predictor, the simple marking of 

stressed syllables in the audio data is not sufficient. We 

need to establish a direct correspondence between the 

speech-based stress marking and the text. For this we used 

self-trained acoustic models, and forced alignment. The 

forced alignment and acoustic model training use 

graphemes as basic units, and this again ensures that 

expert knowledge is not required. This step however, is 

most likely to introduce additional errors in our method, as 

the accuracy results depend highly on the amount of data 

available and the complexity of the letter-to-sound rules in 

a particular language. 

Using the syllable nuclei detection method we then 

extracted the parameter sets from the 80 [ms] window, 

individually for each utterance.1 Each utterance’s acoustic 

features dataset underwent a Principal Component 

Analysis (PCA) feature reduction and transformation step. 

The results of the PCA analysis were then clustered using 

a simple k-means algorithm. A simple assignment of each 

cluster to the stressed and unstressed categories would be 

to assign the most populated cluster to the unstressed 

category. However, in utterances where there are more 

monosyllabic words, this hypothesis does not hold. 

Therefore, we test the stress detection algorithm using 

both clusters, and select the one which assigns the least 

number of stressed marks in polysyllabic words to be the 

one which represents the stressed syllables feature set. As 

a result, all the detected syllables from a certain utterance 

have an assigned stressed or unstressed marker.  

Having the text alignment and the stress markings, for 

each word we determine the stressed syllable’s central 

vowel, and build a text dataset for lexical stress prediction. 

The lexical stress prediction algorithm and results are not 

presented in this paper. 

 
1 We assume that the speech and text dataset is segmented into 

utterance-length chunks. 

 

Fig. 2. Lexical stress detection system flow chart. 

V. EXPERIMENTAL RESULTS 

In our experiments we used a 3.5 hour speech dataset 

uttered by a Romanian female speaker, a subset of the 

Romanian Speech Synthesis (RSS) corpus [12]. The 

results reported here use the following 5 subsets: diph1, 

diph2 – which contain 983 utterances selected for diphone  

coverage; rnd1, rnd2, rnd3 – contain 1493 randomly 

selected sentences from newspaper articles. The data is 

read with a flat intonation and was designed to be used in 

statistical parametric speech synthesis systems.  

For the evaluation of the stress detection, we adopt a 

GOLD standard database for syllabification and stress 

assignment in Romanian, called “Silabisitor” [13]. The 

entire method is developed in Java and Praat, and uses the 

Weka machine learning toolkit [14].  The forced alignment 

at grapheme level is obtained using the HTK toolkit [15]. 

Tables 1 and 2 present the results for each speech subset 

in terms of word and syllable error rate, respectively, and 

using the grapheme-level alignment.  The word error rate 

(WER) in Table 1 is computed as  a function of the 

number of words which had a correct stress assignment 

(CSW), total number of words (TNrW), unverifiable 

words (UW)2, and words which have multiple stresses 

detected (MAW): 

 𝑊𝐸𝑅 = 1 −
𝐶𝑆𝑊

𝑇𝑁𝑟𝑊−𝑈𝑊−𝑀𝑆𝑊
 (3) 

 
2 Words which were not found in our GOLD standard stress 

assignment database.  



 

Table 2 also includes a comparison between the actual 

number of syllables in the speech data, and the detected 

syllable nuclei using the Praat script (SyDER). The stress 

assignment syllable error rate is computer against the 

detected number of syllable nuclei, as we cannot assume 

that the undetected syllable nuclei are classified either 

correct or incorrect. By doing this we also evaluate the 

efficiency of the syllable detection algorithm. It can be 

noticed that the error rates are high, both in terms of word 

(52.4%), as well as syllable (41.3%) level. However, this 

is to be expected, as most of the processing steps are 

unsupervised and a sum of assumptions are made about 

the acoustic behavior of syllable and stress realization.  

Another source of errors for our method is the use of 

grapheme level alignments instead of phone level ones. 

Table 3 presents the results of our method when the 

alignment of the speech and text data is performed at 

phone level. A similar measures of the error rate as in 

Table 2 is used. The results are only slightly better than in 

the case of the grapheme level alignment. Though, this 

was to be expected as Romanian has very simple letter-to-

sound rules. We hypothesize that for more complex 

languages, such as English for example, this difference 

should increase dramatically. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper introduced a first attempt of unsupervised 

detection of lexical stress starting from continuous speech 

data and its orthographic transcript. The method comprises 

two main steps: a syllable and a stress detection algorithm, 

and uses simple acoustic features extracted from the 

speech data. It does not rely on any previous existing 

knowledge, and supports any language as long as the 

required data is available. 

The results are modest at this point, with only around 

half of the syllables having assigned the correct stress 

category. However, by employing additional pre- and 

post-processing, as well as alternative clustering 

procedures, we expect the method to improve its 

performance. And, as stated in the scope of the paper, the 

stress detection text results to be used in the prediction of 

stress for text-to-speech synthesis systems purposes.  
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TABLE 1: WORD ERROR RATES [WER] FOR THE RSS SUBSETS,  

USING GRAPHEME TRANSCRIPTIONS.  

Speech 

subset 
#words CSW UW MSW 

WER 

[%] 

diph1 1 899 723 228 182 51.44 

diph2 1 563 539 284 155 52.05 

rnd1 2 950 1 119 340 255 52.48 

rnd2 1 428 476 222 182 53.52 

rnd3 1 583 546 254 172 52.81 

Total 9 423 3 403 1 328 946 52.40 

 

TABLE 2: SYLLABLE AND STRESS DETECTION ERROR RATES. 

Speech subset #syllables 
#syllable 

nuclei 

SyDER 

[%] 

SyER 

[%] 

diph1 3 078 2 698 12.34 41.33 

diph2 2 680 2 125 20.70 42.73 

rnd1 4 998 4 709 5.78 39.82 

rnd2 2 660 2 007 24.54 42.35 

rnd3 2 893 2 309 20.18 42.62 

Total 16 309 13 848 15.08 41.39 

 
TABLE 3: STRESS DETECTION ERROR RATES 

USING PHONE LEVEL ALIGNMENT. 

Speech subset 
SyER 

[%] 

diph1 38.37 

diph2 38.88 

rnd1 40.92 

rnd2 40.15 

rnd3 40.06 

Total 39.82 
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